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ABSACT

The artificial viscos..ty method of von Neumann and Richtayer for numerical

solution of the partial differential equations of fluid flow is used to obtain

a scheme for the nusierical calculation of the interaction of two spherical

blast waves in air.
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LIST OF SYMBOLS

SUPERSCRIPTS

n refers to the time index.

o refers to time zero.

SUBSCRIPTS

k refers to the R space index.

I refers to the Z space index.

a refers to charge a.

b refers to charge b.

GREEK

a = an adjustable constant to steepen shock fronts.

p = density.

ROMAN

c = sound velocity.

E = specific internal energy.

6r or

J = p

6P ()P

K=
6z oz

6P 6P

L=
6r or

p pressure.

P--p +q.



S)2j 2

q=

0 if Ft _<o

r = Eulerian coordinate perpendicular to the z-axis of symmetry.

i
r a= initial radius of charge a.

0

r b = initial radius of charge b.

R = Lagrange coordinate perpendicular to the Z-axis of symmetry.

AR = increment of Lagrange coordinate R.

t = time.

At = increment of time.

cr(t R Z)U = at I = r component of velocity.

v = 6ztZ -- z component of velocity.

w = p r J.

z = Eulerian coordinate of cylindrical symmetry.

0
z = initial axial distance of center of charge a.a

0zb = initial axial distance of center of charge b.

Z = Lagrange coordinate of cylindrical symmetry.

,8= increment of Lagrange coordinate Z.
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INTRODUCTION

Axi-symmetric unsteady compressible flow problems arise extensively in

military technology. Spherical blast waves and their interaction, explosions

in vertically variable atmosphere, flow past axi-symmetric bodies, high-speed

flow in axi-symmetric hypervelocity guns, shaped-charge gas-metal jet flow--

all are of importance. The exact solution of the equations governing these

flows which satisfies the appropriate initial and boundary conditions requires

solving a system of non-linear hyperbolic partial differential equations in a

two-space and one-time coordinate system, i.e., in three generalized dimensions.

Presently, such exact solutions are not obtainable. The method of character-

istics by which existence of solutions is shown opens the way for a numerical

procedure, but this method requires a series of machine programs that esca-

lates in complexity as the shock and characteristic discontinuity surfaces in

the flow field interact and multiply the ntuuber of continuous zones bounded

by discontinuity surfaces.

Von Neumann and Richtmyer proposed a method of numerical integration that

changes the flow equations to the parabolic type. Although the solution is

only approximate, the overall or essential nature of the solution is preserved;

i.e., curves with momentum and energy discontinuities are warped into smooth

but rapidly changing curves. (Stream surface material discontinuities, however,

are not altered.) Therefore, the numerical procedure does not require the

separate treatment of every continuous zone, and numerical solution with today's

computing machines is quite feasible.

This is the method to be examined for calculation of the interaction of

the blast waves from two spherical charge6 of initial radii r and r , sincea b
in this interaction the flow field is replete with discontinuity surfaces that

complicate the problem.



Shock

Shock

Interaction
zone

FIGURE 1. BLAJT INTERACTION

While this work is the theoretical extension of the experimental work done

in References 1, 2, and 5 on project CLAW, with small modifications, the

analysis can be extended to the other military problems previously listed.
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FLOW F.4UATIONS

The continuity equation in particle or Lagrange cylindrical coordinates

for axi-symmetric flow is

)r 6r

(1)F (prJ)=o, J=
6z 3z

or

(2) prJ = p0 rJ = wO.

The momentum conservation equations are

6P •P

6u r _ . - - K ,K =
0

w 3z 6z

((

6P ýp

S= r---L, L

w 6r 6r

FR4 4Z
where

6r

S= V.

The energy conservation equation is

6E

(5) Tt M1



where, in accordance with Reference 4, P is defined by

(6) P - p + q,

and q represents some artificial dissipative term. In accordance with

References 5 and 7 we put

e-

P} if •

P

(7) q =

0 if <0.To i F t _o

The conservation equations above are supplemented by the thermodynamic

equations of state

(8) p = p(E,p) ,
c = c(E,p) ,

which are assumed to be known.

The conservation equations above are hydrodynamically exact for q = 0;

but for q ý 0, the momentum and energy equations are modified, while the

mass equation remains intact.

Equations (2) thru (8) are ten equations with the ten unknowns

(r, z, u, v, E, P, p, q, p, c), which are to be determined as functions of
(t, R, z).

INITIAL AND BOUNDARY CONDITIONS

Two explosive charges of radii ra and rb with centers at z° and 0 -z°
a ba Zb a

along the Z-axis (Figures 2 and 3), are initiated simultaneously at their

centers. Assuming equilibrium flow and steady state Chapman-Jouget propagation

of the detonation front, the initial explosion state can be calculated either

12



FIGURE 2, * AGflAGE SPACE

13



FIGURE 3. EULE'JuAN SJPACE
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by the Taylor progressive-wave approximation (Ref. 8), or by the numerical

scheme to be subsequently described. In either case, the equation of state

of the explosion products in chemical and thermodynamic equilibrium must be

specified.

If the detonation process is to be calculated by the method outlined in

this article, considering that the media ahead and behind the detonation

front are not the same, the wave fronts must be treated as boundaries moving

with the constant Chapman-Jouget velocity. The wave fronts form cones in

the R, Z, t space (see Figure 2). Behind the detonation fronts the calcu-

lations use the equation of state of the explosion products. Ahead of the

fronts are the undetonated portions of the charges.

When the detonation process is complete and the two explosion gases expand

into the surrounding ambient air, shock waves are formed and propagate in an

outward direction. These shocks eventually collide, and the two flows interact.

The primary area of interest is in the nature of the interaction.

On each t = constant plane (Figure 4) after the shock formation, two types

of domains must be considered -- the explosion gas and air domains. Each has

its own equations of state (8). Although shock surfaces are moving boundaries

of discontinuities, the momentum and energy equations modified by the higher

derivative dissipative term no longer permit this type of discontinuity sur-

faces to exist. In essence, such boundaries are smoothed out and no longer

distinct.

In the Lagrange space (Figures 2 and 4),each explosion gas boundary

remains a fixed circle in each t = constant plane. The equations of these

circles are

+ (z - sa)2 = (ra)2

R2 )2 2

+ (Z - zb) = (rb) 2

Across these circles we assume dynamic equilibrium and laminar flow so that

pressures and velocities normal to the stream surfaces are continuous. The

stream surfaces remain as characteristics across which thermodynamic variables

15



z d

rb • a

j b

FIGURE 4. t = COIC;'TTAN PLANE
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may be discontinuous, because the mass equation is unaltered in the modified

system of conservation equations. Thus, the chemical composition and equations

of state change abruptly across the explosion gas-air boundary.

COMPUTATIONAL SCHEME

The computational scheme for points interior to boundaries, i.e., points

other than explosion gas-air boundaries, will be that adapted to this particular

problem from Reference 5. The stability of this scheme is shown in Relerence 6.

Let k, A, n be indices corresponding to the coordinates R, Z, t (Figure 5).

Assume that on the t= 0 or n = O'th plane all quantities, including

1 1 = r 1 1 1 J0 1 1

o 1 ( 1 + w0  1 +w° 1 10+ w 1 1)
wk,A w~k-,, 1-2 wk-2, 14-2 k+2-, 1-2 k2112

(io) .
(10)

=1 (l_ +•R 1 l+•ZR 1 l+~~ £~
k- , I- k ., A+4 k+-2, 1-2 2' 1

kAZZ 1 1z l+ AZ 1 l+ 'z 1 1 l+t~~- A+

=N k, I -ký1- k-1, I-- k+~ A- 2'n~

are known at the pre-determined points

Rk1 1A, Z 1 1 and R ."k-1 I- k , I- Rk, It Zk,i
2' 2 -2' -2

(This grid spacing in the R, Z space may require changing at some time tn

depending on the gradients of the solution.) Also, assume that on the

successive (n-7)th and (n-l)th constant time planes, the following quantities

have been computed for all values of the indices k, I up to k, A:

17



n(t)

I (k,(1, ÷,l

--I

- 4 I

"o 2p

-- 1 '

-"~~k 1, (n+,ý-,n

Io l, (kn j(k, I, -In)

(k 'I n

L, 2 7
I(k,I,n 1)

II

S•e(z)

FIGURE 5. INDICES CORRESPONDING TO R,Z,t.

k(R)
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(n-•)th plane

1

(At)n's•

(n-1)th plane

tn-' ,

n-i n-i

n-i n-I n-i n-i n-iE 1 p 1 1 p 1 1'1 1 k 1 ,

The computational network sequence is chosen such that on each constant n
plane k varies along constant e strips.

On the nth plane, r and z are approximated using the velocity definitions of

equation (Ii).

11n n-i n-n n-2
k, rk, J, k At

(n) 1
n n-i n-l n-1

Zk,A 1 Zk,1 + Vk, 1t
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At half points r, z are obtained by averaging the values at the neighboring

whole points.

r n 1(r n n + rn + r n

k 1 A k-1,1-1 k,1-1 k-1, kt

(12)

Zn 1 n + n +zn + z n

k (k-1,1-i k,A-1 k-1,1 k,)k P - -f

From these values the gradients of r,z are approximated by the difference

quotients

nn +rn n +rn
rn 1 k,-1 ka k-l-1 k-

k 4-IA1 ýR 1,

n n n n
6rZ n 1 rZk_ -1 + r kti Zk-l,-i + rk-l1A1

(rn) 1 1 1

k - 1 - k - "I -

(17)
n n n n

n 1 rkl rk,1 rk+ll -I rk,-
(Z) 1 16½Z 1 1 ' 2 2

(zn1 A Zk-lAl A-

"2 )
- , -- -k - e - k

which give for the Jacobian
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6r (n 3r) n

(14) j 1 1
k -f, -f 6•z n 6;z n

(TIP 1 1 (;7) 1 1

The continuity equation (2) now gives the density as

0 11 1

(15) P 1 - 1 n jn
k -r 1 1 k

which gives the approximate time derivative of the density as

n n-i
n 1P Pk -k 1 , ,1

(16) () 2 2 2
k -,- !(At)- 2

The artificial viscosity term is evaluated from (7):

a(p I )2 1 +jn-(:(pO 1 i2 • •i +

@ee

1(n 1 1 n- 3

1 1

q 
n

( 17)k 7 - •-

n 1

if ( ) >0

k 1

0 if (k)n -< 0

. k - ',A "
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The energy conservation equation (5) and the equation of state (8) can be used

to calculate the thermodynamic variables En 1 pnk- 7,1 - k - ,' -

and c n by simultaneous solution:
k- -

1

n 2
1Zt~ p k ' + q k-

EP ~ ~ ~ ~ ( .½,n-E -1 +

1 2

k 1 k I t
21

(18) k½•- ,

n n

c 1=c(E½,i_

CkP,- - 2 k !'I,

The second and third equations in (18) will differ for air and explosion gas.

P is approximated by

1
n nn-

1 1=p 1 1 + 1 1
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With the quantities computed previously, the following can be calculated:

An [3rn 1 1 2

•.•,. Lk,.,, + L1_k ,,

J~l 1

kk k k

Bnn

B n 1
2 c_1 1 (1.25 An

(19) 1

B 1 if (F 1 ) ! o

0.225 p' 1 1
k I k- -

1
k n - ,k-aA' 1 (iet)k

1
n-

if () > 0

k - -
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Minimizing, the following is obtained:

If k - i, 1•= 1,

(20) Dn = MIN B ,n
1 1 1 1 13.1

If k l, 1 > 1,

(21) Dn =MIN Bn Cn Dn

If k>l ,

(22) Dn 1 I = MIN B n ' n 1D

(Note: The calculation above assumes that k increases on constant I strips.)

Time increments are calculated from
1 1

A t M I N 1 . 4 A t D nm a ( k

(23)

n n n +
At = • At + at ,

and the time from

n n-i n
t = t + At

(24) 1.
nl+• n-• n

t n t + jt
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From these results, K and L are evaluated as:

(pn ()n

•Zk-i, A-i k-,i

aP) n ýZ)n

(26)

(6p) pn6r n

a k-l,A-i k-l,l-l

Ln
k-l,- n n

;)k-l,- ( k-l,1-1

The momentum conservation equations (3) give the accelerations
I •" n

n r nK
) = _ k-l1,-1 k-l1,-1

(27)rn n

n k-l,I-l i
Tf 0

-k.l,1._1

from which the velocities are derived:

1 1
n + n au • n tn

1 k-l,A-1 a Uk-l,A-- + Ftk-l,-1i

(28)

1 1+,. n - g (v n n
Vk'11-1' vk-1,'•1 + - atn
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This completes the evaluation of all points away from the explosion gas-air

boundaries.

Each network point k, I is examined to determine if it crosses any

boundary. Proceeding on successive constant Z or I lines from R = 0 to
0

R> 0 (Figure 4), starting from a negative Z < (z° - rb) to some positive

Z > (z0 + ra), the R = 0 point has entered the domain of the explosion gas b

whenever

o o 0 0
zb rb - Zo Zb +rb

and has entered the domain of the explosion gas a whenever

o o 0 0
z -r < z < z +r
a a - o,A - a a

If the R 0 point is inside the explosion gas b, along each Z = Zol

= constant line, the inequality

RI2 1- Lrb - Zo, _ zo < _0

obtained using (9) must hold as R, increases. If the inequality holds, R

is inside the explosion gas b; otherwise, R is in air. Similarly, if the

R = 0 point is inside the explosion gas a, along each Zk,1 = Zo, = constant

line, if
k °)2_ Z' o2
2 

-[(ro2 (z ]o2 < 0k, - ao,- a) _

is satisfied, R is inside a, and outside, if the inequality fails.

At any stage where R traverses an explosion gas boundary into air, J, K,

L are evaluated by taking finite difference quotients across this discontinuity

boundary. While this procedure is not exact, the error committed attenuates

with propagation into the flow field.
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CONCLUSION

The new BRLESC computing machine of BRL, with addition times in micro-

seconds, can compute very rapidly the three dimensional network required in

the numerical scheme of this problem. While the extensive information-hunting

and reading with the magnetic tape will slow the overall computation considerably,

a total of 52,000 fast core memory will be available soon, making the problem

entirely feasible and the computing time very fast.

R. C. MAKINO
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